Горючие газы. Инертные и активные защитные газы, их смеси Газ для сварки – что обеспечивает такую мощь пламени

Малый бизнес 03.01.2024
Малый бизнес

Во многих городах нашей страны газ широко вошел в быт людей.

Кислород играет решающую роль при его горении. Прикройте на минутку воздушную заслонку у горелки газовой плиты. Пламя газовой горелки станет белым, коптящим и недостаточно горячим. Это потому, что газ сгорает не полностью, ему не хватает того кислорода, который он встречает в воздухе при выходе из горелки.

Чтобы полнее использовать теплотворную способность газа, горелка устроена так, что при входе в нее газ подсасывает воздух и, смешиваясь с ним, подходит к пламени с таким количеством кислорода, которого достаточно для его полного сгорания. Пламя при этом получается синеватое, короткое и очень горячее. Прикрывая кран газовой горелки, вы уменьшаете приток газа и тем самым уменьшаете подсос воздуха.

Газ, которым пользуются в быту, чаще всего добывается из недр земли и называется природным газом.

Большинство природных газов - это смесь органических соединений, главным образом углеводородов, то есть соединений, в состав которых входят углерод и водород. Оба эти элемента при соединении с кислородом выделяют огромное количество тепла.

В настоящее время открыто очень много крупных месторождений природного газа. Особенно богата природными газами Саратовская область.

По специальному газопроводу Саратов - Москва газ поступает в столицу нашей Родины, где широко используется в промышленности и для бытовых нужд населения.

Преимущества газообразного топлива перед твердым огромны. К ним прежде всего относятся удобства потребления, легкость подачи топлива в топку или газовую горелку, чрезвычайная простота управления пламенем и большая гигиеничность.

Но самым важным преимуществом газообразного топлива является его высокая теплотворная способность. Температура пламени горящего газа значительно выше температуры пламени твердого топлива и в некоторых случаях достигает 3000°.

Как же проходит процесс горения твердого и газообразного топлива?

При горении твердое топливо вначале подсушивается, а затем наступает так называемая сухая перегонка. Образуются газообразные вещества, содержащие углерод. Углерод этих горючих веществ соединяется с кислородом воздуха.

Сгорая, углерод образует углекислый газ (СO 2). При этом выделяется тепло. Часть этого тепла расходуется на осушку и перегонку новых частей твердого топлива; часть тепла забирает азот, который поступает в топку вместе с кислородом.

Нагреваясь до высокой температуры, азот покидает топку, бесцельно унося с собой тепло в атмосферу. Кроме того, из-за плохого «перемешивания» воздуха с твердым топливом не весь кислород, поступающий в топку, участвует в горении; часть его, нагреваясь вместе с азотом, также уходит в атмосферу. Большое количество тепла уходит бесполезно, и вместе с ним уносится много мелких частиц угля в виде дыма.

При использовании газообразного топлива часть этик недостатков устраняется. Горючий газ еще до подхода к пламени хорошо перемешивается с кислородом воздуха. Подачу воздуха в топку можно отрегулировать так, чтобы его было достаточно для полного сгорания газа и не было лишней потери тепла.

При подаче в топку подогретого газа и горячего воздуха потери тепла почти полностью устраняются. На подогревание воздуха и газа обычно используется тепло газов, выходящих из топки. Газообразное топливо экономичнее и удобнее твердого.

Газообразное топливо можно получить и искусственным путем. Для этой цели служат так называемые газогенераторные установки.

В высокую колонку, снабженную внизу колосниковой решеткой, загружают уголь. Загрузка угля производится через верхнее загрузочное отверстие. Когда колонка заполнена, отверстие закрывают, оставляя только узкий выход для газов. Снизу колонки под решетку подают воздух с определенным содержанием кислорода и поджигают уголь. Нижние слои угля, сгорая в присутствии кислорода, образуют углекислый газ и выделяют тепло. Это тепло поднимается вверх по колонке и накаляет верхние слои угля. Углекислый газ, полученный при горении нижних слоев, проходит через раскаленные до 700° верхние слои угля, отдает им часть своего кислорода и образует окись углерода. Окись углерода вместе с азотом воздуха проходит через выходное отверстие и собирается в газохранилищах.

Газ, получаемый в генераторных установках, называют генераторным газом.

Если в генератор вместе с воздухом пустить водяной пар, то одновременно с окисью углерода образуется и водород. Смесь этих газов носит название водяного газа и также используется как газообразное топливо. При горении водяного газа окись углерода соединяется с кислородом и образует углекислый газ. А водород, соединяясь с кислородом, дает воду.

Как генераторный, так и водяной газ содержит окись углерода. Окись углерода - бесцветный газ, не имеющий запаха, немного легче воздуха. Она ядовита и вызывает угар, откуда и происходит другое ее название - угарный газ. В общежитии мы часто подразумеваем под «угаром» запах несгоревшего топлива. Однако запах этот принадлежит не окиси углерода, а другим продуктам горения, также содержащим углерод.

Если продолжительное время (3-4 часа) находиться в помещении, где на каждые 100 тысяч частей воздуха приходится только одна часть окиси углерода, можно угореть. Примесь одной части окиси углерода к 800 частям воздуха уже крайне опасна для жизни человека и за полчаса может вызвать смерть.

Лучшим средством для пострадавшего является чистый воздух, а при сильном отравлении - чистый кислород.

Окись углерода обладает большой калорийностью. При сгорании 1 граммолекулы окиси углерода (28 граммов) выделяется 67 500 калорий; это на 29 500 калорий меньше тепла, выделяемого при сгорании 1 грамматома углерода (12 граммов):

(С + O 2 = СO 2 + 97 000 кал.)

(СО + V2O2 = СO 2 + 67 500 кал.)

Казалось бы, что при таком соотношении тепловых эффектов нецелесообразно уголь переводить в окись углерода, с тем чтобы, в конечном итоге, при сжигании ее получить меньше тепла. В действительности же это не так. Если подсчитать все потери тепла при сгорании твердого топлива, в том числе и потери на золу, которая составляет 5-30 процентов, то использование генераторного газа окажется выгодным.

Еще более целесообразным является получение окиси углерода на месте залегания угля без добычи его на поверхность. Такой способ получения газообразного топлива носит название подземной газификации угля.

Идея подземной газификации угля впервые родилась у великого русского химика Менделеева. В 80-х годах прошлого столетия он писал: «Настанет, вероятно, со временем даже такая эпоха, что угля из земли вынимать не будут, а там, в земле, сумеют превращать в горючие газы и их по трубам будут распределять на далекие расстояния».

Эта смелая для того времени мысль была подхвачена многими учеными. Начало осуществления идеи подземной газификации было оценено В. И. Лениным в статье «Одна из величайших побед в технике», опубликованной в «Правде» в 1913 году. В. И. Ленин охарактеризовал подземную газификацию как переворот в промышленности, равносильный гигантской технической революции едва ли не самой важной отрасли производства.

Однако в условиях царской России не удалось развить подземную газификацию. Это стало возможным только при советской власти.

В 1931 году Центральный Комитет Всесоюзной Коммунистической партии принял решение по реализации проблем подземной газификации угля. С тех пор в нашей стране идет непрерывная работа по широкому внедрению этого передового метода добычи топлива из недр земли.

Преимущества этого метода огромны.

Подземная газификация значительно упрощает и удешевляет разработку каменноугольных месторождений и облегчает труд горняков. Транспорт освобождается от перевозок большого количества твердого топлива.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Кислород

Кислород - это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации.

Технический кислород для газопламенных работ получают в специальных установках из атмосферного воздуха в жидком состоянии. Жидкий кислород - это легко подвижная, голубоватая жидкость. Температура кипения (начало испарения) жидкого кислорода минус 183° С.

При нормальных условиях и температуре минус 183° С. легко испаряется, превращаясь в газообразное состояние. При повышении температуры интенсивность испарении увеличивается. Из 1 литра жидкого кислорода, образуется около 860 литров газообразного.

Кислород обладает большой химической активностью. Реакция соединения его с маслами, жирами, угольной пылью, ворсинками ткани и т.д., приводит их к мгновенному окислению, самовоспламенению и взрыву при обычных температурах.

Кислород в смеси с горючими газами и парами горючих жидкостей образует в широких пределах взрывчатые смеси.

«Кислород газообразный технический» согласно ГОСТ 5583- 78 выпускается для сварки и резки трех сортов: 1-й - чистотой не менее 99,7%, 2-й - не менее 99,5%, 3-й - не менее 99,2% по объёму. Чем меньше в кислороде газовых примесей, тем выше скорость реза, чище кромки и меньше расход кислорода. На предприятие поставляется в газообразном состоянии, в стальных кислородных баллонах «голубого» цвета ёмкостью 40 дм. куб. и давлением 150 кгс/см2. Сжатый кислород хранят и транспортируют в баллонах по ГОСТ 949-73.

Пропан - технический, бесцветный газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н6, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. Пропанобутановая смесь – это смесь газов главным образом технического пропана и бутана. Эти газы относятся к группе тяжёлых углеводородов. Сырьём для их получения являются природные нефтяные газы, отходящие газы нефтеперерабатывающих заводов. Эти газы в чистом виде или в виде смесей при нормальной температуре и на большом повышении давления могут быть переведены из газообразного состояния в жидкое состояние.Хранится и транспортируется пропанобутановая смесь в жидком состоянии, а используется в газообразном.

Газообразная пропанобутановая смесь - это горючий газ без вкуса, запаха и цвета, тяжелее воздуха в 2 раза, поэтому при утечке газа он не рассеивается в атмосфере, а опускается вниз и заполняет углубления пола или местности.

Газообразная пропанобутановая смесь при атмосферном давлении не обладает токсичным (отравляющим) воздействием на организм человека, так как мало растворяется в крови. Но, попадая в воздух, смешивается с ним, вытесняет и уменьшает содержание кислорода в воздухе. Человек, находящийся, а такой атмосфере испытывает кислородное голодание, а при значительных концентрациях газа в воздухе может погибнуть от удушья.

Предельно допустимая концентрация пропан-бутана в воздухе рабочей зоны должна быть не более 300 мг/м 3 (в пересчёте на углерод).При попадании жидкого пропан-бутана на кожные покровы тела, нормальная температура которого 36,6 град. С, происходит быстрое его испарение и интенсивный отбор тепла с поверхности тела, затем наступает обморожение.

По ГОСТ 20448-80 промышленность выпускает пропанобутановую смесь 3 марок:

  • пропан технический, с содержанием пропана более 93%, бутана - менее 3 процентов;
  • бутан технический, с содержанием бутана менее 93%, пропана не более 4 процентов;
  • пропанобутановая смесь, 2-х типов: зимняя и летняя.

На предприятия для газопламенной обработки металлов поставляется пропанобутановая смесь в стальных баллонах зимняя и летняя.

Зимняя пропанобутановая смесь содержит 15% пропана, 25% бутана и прочих компонентов.

Летняя пропанобутановая смесь содержит 60% бутана, 40% пропана и прочих компонентов.

Для сжигания I куб. м газообразной пропано-бутановой смеси требуется 25-27 куб. м воздуха или 3,58 - 3,63 кг кислорода.

Температура воспламенения с воздухом:

  • пропана - 510 град. С;
  • бутана - 540 град. С

Температура воспламенения пропанобутановой смеси:

  • с воздухом 490-510 град. С;
  • с кислородом - 465-480 град. С.

Температура пламени пропанобутановой смеси с кислородом зависит от её состава и равна 2200-2680 град. С. При окислительном пламени (избыток кислорода) температура повышается.

Теплотворная способность пропанобутановой смеси равна 93000 Дж/м куб. (22000 ккал/м куб.).

Скорость горения пропанобутановой смеси:

  • при обычном горении 0,8 – 1,5 м/сек.;
  • при дистанционном (со взрывом) 1,5 - 3,5 км/сек.

Пределы взрывоопасности пропан-бутана при нормальном давлении составляют:

    • в смеси с воздухом:
  • нижний – 1,5%;
  • верхний – 9,5%.нижний – 2%;
    • в смеси с кислородом:
  • верхний – 46%.

Пропанобутановые смеси в жидком виде разрушают резину, поэтому необходимо тщательно следить за резиновыми изделиями, применяемыми в газопламенной аппаратуре, и в случае необходимости производить их своевременную замену.

Наибольшая опасность разрушения резины существует зимой, вследствие большей вероятности попадания жидкой фазы пропанобутановой смеси в рукава.

Ацетилен - это горючий газ, без цвета, вкуса, с резким специфическим чесночным запахом, он легче воздуха. Его плотность по отношению к воздуху 0,9.

При нормальном атмосферном давлении (760 мм ртутного столба) и температуре плюс 20 град. С 1 м куб. имеет массу 1,09 кг, воздух 1,20 кг.

При нормальном атмосферном давлении и температуре от - 82,4 градуса до - 84 градусов С ацетилен переходит из газообразного в жидкое состояние, а при температуре минус 85 град. С затвердевает.

Ацетилен - единственный широко применяемый в промышленности газ, горение и взрыв которого возможны в отсутствии кислорода или других окислителей.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии, получая его в передвижных или стационарных ацетиленовых генераторах, либо растворённым в ацетиленовых баллонах. Растворенный ацетилен по ГОСТ 5457-75 представляет собой раствор газообразного ацетилена в ацетоне, распределённый в пористом наполнителе под давлением до 1,9 МПА (19 кгс/см 2 ). В качестве пористых наполнителей используются насыпные – берёзовый активированный уголь (БАЦ) и литые пористые массы.

Основным сырьём для получения ацетилена является карбид кальция. Это твёрдое вещество тёмно-серого или коричневатого цвета. Ацетилен получается в результате разложения (гидролиза) кусков, карбида кальция водой. Выход ацетилена на 1 кг карбида кальция составляет 250 дм куб. Для разложения 1 кг карбида кальция требуется от 5 до 20 дм куб. воды. Карбид кальция транспортируется в герметически закрытых барабанах. Масса карбида в одном барабане от 50 до 130 кг.

При нормальном атмосферном давлении ацетилен с воздухом и кислородом образуют взрывоопасные смеси. Пределы взрывоопасности ацетилена с воздухом:

  • нижний – 2,2%;
  • верхний – 81%.

Пределы взрывоопасности ацетилена с кислородом:

  • нижний – 2,3%;
  • верхний – 93%.

Наиболее взрывоопасные концентрации ацетилена с воздухом и кислородом составляют:

  • нижний – 7%;
  • верхний – 13%.

ПРИЛОЖЕНИЕ 7. Характеристика взрывоопасных и вредных газов, наиболее часто встречающихся в резервуарах и подземных сооружениях.

В подземных сооружениях наиболее часто обнаруживаются такие взрывоопасные и вредные газы: метан, пропан, бутан, пропилен, бутилен, окись (оксид) углерода, углекислый газ, сероводород и аммиак.

Метан CH 4 (болотный газ) — бесцветный горючий газ без запаха, легче воздуха. Проникает в подземные сооружения из почвы. Образуется при медленном разложении без доступа воздуха растительных веществ: при гниении клетчатки под водой (в болотах, стоячих водах, прудах) или разложении растительных остатков в залежах каменного угля. Метан является составной частью промышленного газа и при неисправном газопроводе может проникать в подземные сооружения. Не ядовит, но его присутствие уменьшает количество кислорода в воздушной среде подземных сооружений, что приводит к нарушению нормального дыхания при работах в этих сооружениях. При содержании метана в воздухе 5-15% по объему образуется взрывоопасная смесь.

Пропан C 3 H 8 , бутан C 4 H 10 , пропилен C 3 H 6 и бутилен C 4 H 8 — бесцветные горючие газы, тяжелее воздуха, без запаха, трудно смешиваются с воздухом. Вдыхание пропана и бутана в небольших количествах не вызывает отравления; пропилен и бутилен оказывают наркотическое воздействие.

Сжиженные газы с воздухом могут образовывать взрывоопасные смеси при следующем их содержании, % по объему:

Пропан………………… 2,3 — 9,5

Бутан…………………. 1,6 — 8,5

Пропилен………………. 2,2 — 9,7

Бутилен……………….. 1,7 — 9,0

Средство защиты — шланговые противогазы ПШ-1, ПШ-2.

Окись углерода СО — бесцветный газ, без запаха, горючий и взрывоопасный, немного легче воздуха. Окись углерода чрезвычайно ядовита. Физиологическое воздействие окиси углерода на человека зависит от ее концентрации в воздухе и длительности вдыхания.

Вдыхание воздуха, содержащего окись углерода выше предельно допустимой концентрации, может привести к отравлению и даже к смерти. При содержании в воздухе 12,5-75% по объему окиси углерода образуется взрывоопасная смесь.

Средство защиты — фильтрующий противогаз марки СО.

Углекислый газ CO 2 [двуокись (диоксид) углерода] — бесцветный газ, без запаха, с кисловатым вкусом, тяжелее воздуха. Проникает в подземные сооружения из почвы. Образуется в результате разложения органических веществ. Образуется также в резервуарах (баках, бункерах и др.) при наличии в них сульфоугля или угля вследствие его медленного окисления.

Попадая в подземное сооружение, углекислый газ вытесняет воздух, заполняя со дна пространство подземного сооружения. Углекислый газ не ядовит, но обладает наркотическим действием и способен раздражать слизистые оболочки. При высоких концентрациях вызывает удушье вследствие уменьшения содержания кислорода в воздухе.

Средство защиты — шланговые противогазы ПШ-1, ПШ-2.

Сероводород H 2 S — бесцветный горючий газ, имеет запах тухлых яиц, несколько тяжелее воздуха. Ядовит, действует на нервную систему, раздражает дыхательные пути и слизистую оболочку глаз.

При содержании в воздухе сероводорода 4,3 — 45,5% по объему образуется взрывоопасная смесь.

Средство защиты — фильтрующие противогазы марок В, КД.

Аммиак NH 3 — бесцветный горючий газ с резким характерным запахом, легче воздуха, ядовит, раздражает слизистую оболочку глаз и дыхательные пути, вызывает удушье. При содержании в воздухе аммиака 15-28% по объему образуется взрывоопасная смесь.

Средство защиты — фильтрующий противогаз марки КД.

Водород H 2 — бесцветный горючий газ без вкуса и запаха, значительно легче воздуха. Водород — физиологически инертный газ, но при высоких концентрациях вызывает удушье вследствие уменьшения содержания кислорода. При соприкосновении кислотосодержащих реагентов с металлическими стенками емкостей, не имеющих антикоррозийного покрытия, образуется водород. При содержании в воздухе водорода 4-75% по объему образуется взрывоопасная смесь.

Кислород O 2 — бесцветный газ, без запаха и вкуса, тяжелее воздуха. Токсическими свойствами не обладает, но при длительном вдыхании чистого кислорода (при атмосферном давлении) наступает смерть вследствие развития плеврального отека легких.

Кислород не горюч, но является основным газом, поддерживающим горение веществ. Высокоактивен, соединяется с большинством элементов. С горючими газами кислород образует взрывоопасные смеси.

Не вступают в химическое взаимодействие с металлами и практически не растворяются в металлах

Аргон (Ar) - бесцветный, без запаха, негорючий, неядовитый газ, почти в 1,5 раза тяжелее воздуха. В металлах нерастворим как в жидком, так и в твердом состояниях. Выпускается ( -79) двух сортов: высшего и первого.

В газе высшего сорта содержится 99,993 % аргона, не более 0,006 % азота и не более 0,0007 % кислорода. Рекомендуется для сварки ответственных металлоконструкций из активных и редких металлов и сплавов, цветных металлов.

В газе первого сорта содержится 99,98 % аргона, до 0,01 % азота и не более 0,002 % кислорода. Рекомендуется для сварки стали и чистого алюминия.

Гелий (Не) - бесцветный газ, без запаха, неядовитый, значительно легче воздуха и аргона. Выпускается ( -75) двух сортов: высокой чистоты (до 99,985 %) и технический (99,8%).

Используется реже, чем аргон, из-за его дефицитности и высокой стоимости. Однако при одном и том же значении тока дуга в гелии выделяет в 1,5 - 2 раза больше энергии, чем в аргоне. Это способствует более глубокому проплавлению металла и значительному увеличению скорости сварки.

Гелий применяют при сварке химически чистых и активных материалов, а также сплавов на основе алюминия и магния.

Азот (N 2) - газ без цвета, запаха п вкуса, неядовитый. Используется только для сварки меди и ее сплавов, по отношению к которым азот является инертным газом. Выпускается ( -74) четырех сортов: высшего - 99,9% азота; 1-го - 99,5%; 2-го - 99,0%; 3-го - 97,0%.

Активные

Защищают зону сварки от воздуха, но сами растворяются в жидком металле либо вступают с ним в химическое взаимодействие

Кислород (О 2) - газ без цвета, запаха и вкуса. Негорючий, но активно поддерживающий горение. Технический газообразный кислород (ГОСТ5583-78) выпускается трех сортов: 1-й сорт - 99,7% кислорода; 2-й - 99,5%; 3-й - 99,2%. Применяется только как добавка к инертным и активным газам.

Углекислый газ (СО 2) - бесцветный, со слабым запахом, с резко выраженными окислительными свойствами, хорошо растворяется в воде. Тяжелее воздуха в 1,5 раза, может скапливаться в плохо проветриваемых помещениях, в колодцах, приямках. Выпускается ( -85) трех сортов: высший-99,8% СО 2 , 1-й-99,5% и 2-й-98,8%. Двуокись углерода 2-го сорта применять не рекомендуется. Для снижения влажности СО 2 рекомендуется установить баллон вентилем вниз и через 1-2 ч открыть вентиль на 8-10 с для удаления воды. Перед сваркой из нормально установленного баллона выпускают небольшое количество газа, чтобы удалить попавший внутрь воздух.

В углекислом газе сваривают чугун, низко- и среднеуглеродистые, низколегированные конструкционные коррозионностойкие стали.

Газовые смеси

Служат для улучшения процесса сварки и качества сварного шва

Смесь аргона и гелия. Оптимальный состав: 50% + 50% или 40% аргона и 60% гелия. Пригоден для сварки алюминиевых и титановых сплавов.

Смесь аргона и кислорода при содержании кислорода 1-5% стабилизирует процесс сварки, увеличивает жидко текучесть сварочной ванны, перенос электродного металла становится мелкокапельным. Смесь рекомендуется для сварки углеродистых и нержавеющих сталей.

Смесь аргона и углекислого газа. Рациональное соотношение - 75-80% аргона и 20-25% углекислого газа. При этом обеспечиваются минимальное разбрызгивание, качественное формирование шва, увеличение производительности, хорошие свойства сварного соединения. Используется при сварке низкоуглеродистых и низколегированных конструкционных сталей.

Смесь углекислого газа и кислорода. Оптимальный состав: 60-80% углекислого газа и 20-40% кислорода. Повышает окислительные свойства защитной среды и температуру жидкого металла. При этой смеси используют электродные проволоки с повышенным содержанием раскислителей, например Св-08Г2СЦ. Шов формируется несколько лучше, чем при сварке в чистом углекислом газе. Смесь применяют для сварки углеродистых, легированных и некоторых высоколегированных конструкционных сталей.

Смесь аргона, углекислого газа и кислорода - трехкомпонентная смесь обеспечивает высокую стабильность процесса и позволяет избежать пористости швов. Оптимальный состав: 75% аргона, 20% углекислого газа и 5% кислорода. Применяется при сварке углеродистых, нержавеющих и высоколегированных конструкционных сталей.

Горючие газы - вещества с низким порогом теплоты сгорания. Это основной компонент которое используется для газоснабжения городов, в промышленности и других сферах жизнедеятельности. Физико-химические характеристики таких газов зависят от наличия в их составе негорючих компонентов и вредных примесей.

Виды и происхождение горючих газов

Горючие газы содержат метан, пропан, бутан, этан, водород и иногда с примесями гексана и пентана. Их получают двумя способами - из природных месторождений и искусственным путем. происхождения - топливо, результат естественного биохимического процесса разложения органики. Большинство залежей расположены на глубине менее 1,5 км и состоят преимущественно из метана с малыми примесями пропана, бутана и этана. С увеличением глубины залегания растет процентное содержание примесей. Добывается из природных залежей или в качестве сопутствующих газов нефтяных месторождений.

Чаще всего залежи природного газа сконцентрированы в осадочных породах (песчаники, галечники). Покрывающими и подстилающими слоями служат плотные глинистые породы. В качестве подошвы в основном выступают нефть и вода. Искусственные - горючие газы, получаемые вследствие термической переработки различного вида твердых топлив (кокс и др.) и производные продукты нефтепереработки.

Основным компонентом природных газов, добываемых в сухих месторождениях, является метан с небольшим количеством пропана, бутана и этана. Природный газ характеризуется постоянством состава, относится к категории сухих. Состав газа, получаемый при нефтепереработке и из смешанных газонефтяных залежей, непостоянен и зависит от величины газового фактора, природы нефти и условий раздела нефтегазовых смесей. В него входит значительное количество пропана, бутана, этана, а также другие легкие и тяжелые углеводороды, содержащиеся в нефти, вплоть до керосиновых и бензиновых фракций.

Добыча горючих природных газов заключается в извлечении его из недр, сбор, удаление лишней влаги и подготовку к транспортировке потребителю. Особенность состоит в том, что на всех стадиях от пласта до конечного потребителя весь процесс герметизирован.

Горючие газы и их свойства

Жаропроизводительность - максимальная температура, выделяемая при полном сгорании сухого газа в теоретически необходимом количестве воздуха. При этом выделяемое тепло расходуется на нагревание Для метана этот параметр в °С равен 2043, бутана - 2118, пропана - 2110.

Температура воспламенения - наименьшая температура, при которой происходит самопроизвольный процесс воспламенения без воздействия внешнего источника, искры или пламени, за счет теплоты выделяемой частицами газа. Этот параметр особенно важен для определения допустимой температуры поверхности аппаратов, используемых в опасных зонах, которая не должна превышать температуру воспламенения. Для такой аппаратуры присваивается температурный класс.

Температура вспышки - наименьшая температура, при которой выделяется достаточное количество паров (на поверхности жидкости) для воспламенения от наименьшего пламени. Это свойство не стоит обобщать с температурой воспламенения, поскольку эти параметры могут разниться в значительной степени.

Плотность газа/пара. Определяется в сравнении с воздухом, чья плотность равна 1. < 1 - растет, > 1 - падает. Например, для метана этот показатель равен 0,55.

Опасность горючих газов

Горючие газы представляют опасность тремя своими свойствами:

  1. Горючесть. Существует риск возникновения пожара, связанный с неконтролируемым воспламенением газа;
  2. Токсичность. Риск отравления газом или продуктами его горения (угарный газ);
  3. Удушение вследствие дефицита кислорода, который может быть замещен другим газом.

Процесс горения представляет собой химическую реакцию, в которую входит кислород. При этом выделяется энергия в виде теплоты, пламени. Воспламеняющим веществом выступает газ. Процесс горения газа возможен при наличии трех факторов:

  • Источник воспламенения.
  • Горючие газы.
  • Кислород.

Целью противопожарной защиты является исключение как минимум одного из факторов.

Метан

Это бесцветный легкий горючий газ без запаха. Нетоксичен. Метан составляет 98% всех природных газов. Считается основным, определяющим свойства природного газа. На 75% состоит из углерода и на 25% из водорода. Масса куб. метра - 0,717 кг. Сжижается при температуре 111 К, при этом его объем уменьшается в 600 раз. Обладает низкой реакционной способностью.

Пропан

Газ пропан - горючий газ, без цвета и запаха. Обладает большей реакционной способностью, чем метан. Содержание в природном газе 0,1-11% по массе. В попутных газах из смешанных газонефтяных месторождений до 20%, в продуктах переработки твердых топлив (бурых и каменных углей, каменноугольной смолы) до 80%. Газ пропан используется в различных реакциях для получения этилена, пропилена, низших олефинов, низших спиртов, ацетона, муравьиной и пропионовой кислоты, нитропарафинов.

Бутан

Горючий газ без цвета, со своеобразным запахом. Бутан газ легко сжимаем и летуч. Содержится в нефтяном газе до 12% по объему. Также получатся в результате крекинга нефтяных фракций и лабораторным путем по реакции Вюрца. Температура замерзания -138 о С. Как и все углеводородные газы, пожароопасен. Вреден для нервной системы, при вдыхании вызывает дисфункцию дыхательного аппарата. Бутан (газ) обладает наркотическими свойствами.

Этан

Этан - газ без цвета и запаха. Представитель углеводородов. Дегидрирование при 550-650 0 С приводит к этилену, свыше 800 0 С - к ацетилену. Содержится в природных и попутных газах до 10%. Выделяется низкотемпературной ректификацией. Значительные объемы этана выделяются при крекинге нефти. В лабораторных условиях получают по реакции Вюрца. Является основным сырьем для получения винилхлорида и этилена.

Водород

Прозрачный газ без запаха. Нетоксичен, в 14,5 раз легче воздуха. По виду водород не отличается от воздуха. Обладает высокой реакционной способностью, широкими пределами воспламенения, весьма взрывоопасен. Входит в состав едва ли не всех органических соединений. Наиболее трудно сжимаемый газ. Свободный водород в природе встречается крайне редко, но в виде соединений очень распространен.

Окись углерода

Бесцветный газ, без вкуса и запаха. Масса 1 куб. м - 1,25 кг. Содержится в высококалорийных газах наряду с метаном и другими углеводородами. Увеличение доли окиси углерода в горючем газе понижает теплоту сгорания. Оказывает токсическое влияние на человеческий организм.

Применение горючих газов

Горючие газы обладают высокой теплотой сгорания, а потому являются высокоэкономичным энергетическим топливом. Широко применяются для коммунально-бытовых нужд, на электростанциях, в металлургии, стекольной, цементной и пищевой промышленности, в качестве автомобильного топлива, при производстве строительных материалов.

Использование горючих газов в качестве сырья для производства таких органических соединений как формальдегид, метиловый спирт, уксусная кислота, ацетон, ацетальдегид, обусловлено наличием в их составе углеводородов. Метан, как основной компонент горючих природных газов, широко применяется для производства различных органических продуктов. Для получения аммиака и различного рода спиртов используется синтез-газ - продукт конверсии метана кислородом или водяным паром. Пиролизом и дегидрогенизацией метана получают ацетилен, наряду с водородом и сажей. Водород, в свою очередь, используется для синтеза аммиака. Горючие газы, и в первую очередь этан, применяют при получении этилена и пропилена, которые в дальнейшем используются в качестве сырья для производства пластмасс, искусственных волокон и синтетических каучуков.

Перспективным видом топлива для многих сфер народного хозяйства является сжиженный метан. Использование сжиженных газов во многих случаях дает большую экономическую выгоду, позволяя снизить материалозатраты на транспортировку и решить проблемы газоснабжения в отдельных районах, позволяет создавать запасы сырья для нужд химической промышленности.

Рекомендуем почитать

Наверх