Скачать презентацию математические софизмы 5 6 кл. Презентация на тему: Математические софизмы

Заработок  28.01.2024
Заработок 

учитель математики

Ливадийского УВК

Постернакова Ольга Глебовна


ПОНЯТИЕ СОФИЗМА

Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям.


  • Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике. В период падения нравов древнегреческого общества (5 век) появляются так называемые учителя красноречия, которые целью своей деятельности считали и называли приобретение и распространения мудрости, вследствие чего они именовали себя софистами.

  • Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса.

  • Известнейший ученый и философ Сократ по началу был софистом, активно участвовал в спорах и обсуждениях софистов, но вскоре стал критиковать учение софистов и софистику в целом. Философия Сократа была основана на том, что мудрость приобретается с общением, в процессе беседы.

  • Запрещенные действия;
  • пренебрежение условиями теорем; формул и правил;
  • ошибочный чертеж;
  • опора на ошибочные умозаключения.

ФОРМУЛА УСПЕШНОСТИ СОФИЗМА

  • Успешность софизма определяется следующей формулой:

a + b + c + d + e + f ,

где (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы.

  • а - отрицательные качества лица (отсутствие развития способности управлять вниманием). b - положительные качества лица (способность активно мыслить) с - аффективный элемент в душе искусного диалектика d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления е - категоричность тона, не допускающего возражения, определённая мимика f - пассивность слушателя
  • а - отрицательные качества лица (отсутствие развития способности управлять вниманием).
  • b - положительные качества лица (способность активно мыслить)
  • с - аффективный элемент в душе искусного диалектика
  • d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления
  • е - категоричность тона, не допускающего возражения, определённая мимика
  • f - пассивность слушателя

  • Сумма любых двух одинаковых чисел равна нулю.
  • Возьмем произвольное не равное нулю число а и напишем уравнение х = а. Умножая обе его части на (-4а), получим -4ах = -4а 2 . Прибавляя к обеим частям последнего равенст­ва х 2 и перенеся член -4а 2 влево с противоположным зна­ком, получим х 2 -4ах + 4a 2 = х 2 , откуда, замечая, что слева стоит полный квадрат, имеем
  • (х-2а) 2 = х 2 , х-2а = х.
  • Заменяя в последнем равенстве х на равное ему число а, по­лучим а-2а = а, или -а = а, откуда 0 = a + a,
  • т. е. сумма двух произвольных одинаковых чисел а равна 0.

  • Все числа равны между собой
  • Докажем, что 5=6.
  • Запишем равенство:
  • 35+10-45=42+12-54
  • Вынесем за скобку общие
  • множители: 5∙(7+2-9)=6∙(7+2-9).
  • Разделим обе части этого равенства на
  • общий множитель (он заключен в скобки):
  • 5∙(7+2-9)=6∙(7+2-9).
  • Значит, 5=6 .

  • «Дважды два равно пяти».
  • Обозначим 4=а, 5=b, (a+b)/2=d. Имеем: a+b=2d, a=2d-b, 2d-a=b. перемножим два последних равенства по частям. Получим: 2da-a*a=2db-b*b. Умножим обе части получившегося равенства на –1 и прибавим к результатам d*d. Будем иметь: a 2-2da+d2=b2 -2bd+d2, или (a-d)(a-d)=(b-d)(b-d), откуда a-d=b-d и a=b, т.е. 2*2=5

  • « Спичка вдвое длиннее телеграфного столба»
  • Пусть а дм - длина спички и b дм - длина столба. Разность между b и a обозначим через c .
  • Имеем b - a = c, b = a + c. Перемножаем два эти равенства по частям, находим: b 2 - ab = ca + c 2 . Вычтем из обеих частей bc. Получим: b 2 - ab - bc = ca + c 2 - bc, или b(b - a - c) = - c(b - a - c), откуда: b = - c, но c = b - a, поэтому b = a - b, или a = 2b.

ТРИГОНОМЕТРИЧЕСКИЙ СОФИЗ м

  • Бесконечное большое число равно нулю
  • Если острый угол увеличивается. Приближаясь к 900 как к пределу, то его тангенс, как известно, неограниченно растёт по абсолютной величине, оставаясь положительным: tg90 0 = +∞.
  • Но если взять тупой угол и уменьшить его, приближая к 900 как к пределу, то его тангенс, оставаясь отрицательным, также неограниченно растёт по абсолютной величине: tg90 0 = - ∞.
  • Сопоставим формулы (1) и (2): - ∞ = +∞

  • «Самое быстрое существо не способно догнать самое медленное»
  • Быстроногий Ахиллес никогда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет и это расстояние, но черепаха уйдет еще чуточку вперед. И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.

  • «Софизм Кратила»
  • Диалектик Гераклит, провозгласив тезис "все течет", пояснял, что в одну и ту же реку (образ природы) нельзя войти дважды, ибо когда входящий будет входить в следующий раз, на него будет течь уже другая вода. Его ученик Кратил, сделал из утверждения учителя другие выводы: в одну и ту же реку нельзя войти даже один раз, ибо пока ты входишь, она уже изменится.

  • «Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит».
  • «Сократ - человек; человек - не то же самое, что Сократ; значит, Сократ - это нечто иное, чем Сократ».
  • «Для того чтобы видеть, вовсе необязательно иметь глаза, ведь без правого глаза мы видим, без левого тоже видим; кроме правого и левого, других глаз у нас нет; поэтому ясно, что глаза не являются необходимыми для зрения».
  • «Тот, кто лжет, говорит о деле, о котором идет речь, или не говорит о нем; если он говорит о деле, он не лжет; если он не говорит о деле, он говорит о чем-то несуществующем, а о нем невозможно не только лгать, но даже мыслить и говорить».

  • «Одна и та же вещь не может иметь какое-то свойство и не иметь его. Хозрасчет предполагает самостоятельность, заинтересованность и ответственность. Заинтересованность - это, очевидно, не ответственность, а ответственность - не самостоятельность. Получается вопреки сказанному вначале, что хозрасчет включает самостоятельность и несамостоятельность, ответственность и безответственность».
  • «Акционерное общество, получившее когда-то ссуду от государства, те-перь ему уже не должно, так как оно стало иным: в его правлении не осталось никого из тех, кто просил ссуду».

  • "Предмет математики настолько серьезен,что полезно не упускать случаев сделать его немного занимательным".
  • Б. Паскаль




  • 1.познакомится с определением софизма;

2.изучить историю появления софизмов, их роль в развитии математики;

3.рассмотреть примеры математических софизмов, найти ошибки в рассуждениях;

4.составить перечень ошибок;

5.составить собственные софизмы.


  • Софизм – (от греческого sophisma , «мастерство, умение, хитрая выдумка, уловка») - умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное

утверждение, противоречащее общепринятым представлениям. Софизм основан на преднамеренном, сознательном нарушении правил логики. Каким бы ни был софизм, он всегда содержит одну или несколько замаскированных ошибок.


  • № 1 5=6

Возьмём числовое тождество

35+10-45=42+12-54. Вынесем общие множители левой и правой частей за скобки. Получим: 5(7+2-9)=6(7+2-9). Разделим обе части на общий множитель, заключенный в скобки. Получим 5=6



  • № 2 2 · 2=5

Имеем числовое равенство 4:4=5:5. Вынесем за скобки в каждой части общий множитель: 4(1:1)=5(1:1). Числа в скобках равны, поэтому 4=5, 2 · 2=5



  • № 3 5=1

Из чисел 5 и 1 по отдельности вычтем 3, получим числа 2 и -2. При возведении в квадрат из них получаются равные числа 4 и 4 ,значит, должны быть равны и исходные числа 5 и 1. Где ошибка?



  • № 4 4 рубля=40000 копеек

Возьмем равенство 2р.=200к., возведем его в квадрат 4р.=40000к. В чем ошибка?



  • Решив эти задачи, можно заметить, что в математических софизмах были допущены следующие ошибки:

1.Деление на 0 (№1)

2.Неправильные выводы из равенства дробей (№2)

3.Неправильное извлечение квадратного корня из квадрата выражения (№3)

4.Нарушения правил действия с именованными величинами (№4)


Слайд 2

Цель проекта: Значение математических софизмов в развитии логического мышления школьников.

Задачи проекта: Познакомиться с понятием – софизм. Рассмотреть примеры математических софизмов. Провести исследование по школе среди учащихся 6-х, 7-х и 9-х классов. Проанализировать полученные результаты. Используемые методы: Изучение литературы Решение математических задач Сбор и обработка данных с помощью информационных технологий Создание презентации

Слайд 3

Что такое софизм

Софизм (от греч. sophisma – уловка, выдумка, головоломка), формально кажущееся правильным, но по существу ложное умозаключение, основанное на преднамеренно неправильном подборе исходных положений. Виды математических софизмов: Арифметические софизмы Алгебраические софизмы Геометрические софизмы Правильно понятая ошибка – это путь к открытию И.П. Павлов.

Слайд 4

Примеры алгебраических софизмов

Пример 1. 1 р. = 10 000 к. Возьмём верное равенство: 1 р. = 100 к. Возведём его по частям в квадрат. Мы получим: 1 р. = 10 000 к. Вопрос: В чём ошибка? Ответ: Возведение в квадрат величин не имеет смысла. В квадрат возводятся только числа. Пример 2 5=6 Попытаемся доказать, что 5 = 6. С этой целью возьмём числовое тождество: 35 + 10 – 45 = 42 + 12 – 54. Вынесем общие множители левой и правой частей за скобки. Получим: 5 (7 + 2 – 9) = 6 (7 + 2 – 9). Разделим обе части этого равенства на общий множитель (заключённый в скобки). Получаем 5=6 Вопрос: В чём ошибка? Ответ: Общий множитель (7 + 2 – 9) равен 0, а делить на 0 нельзя.

Слайд 5

Примеры геометрических софизмов

Загадочное исчезновение У нас есть произвольный прямоугольник, на котором начерчено 13 одинаковых линий на равном расстоянии друг от друга, так, как показано на рис. 1. Теперь «разрежем» прямоугольник прямой MN, проходящей через верхний конец первой и нижний конец последней линии. Сдвигаем обе половины вдоль по этой линии и замечаем, что линий вместо 13 стало 12. Одна линия исчезла бесследно. Вопрос: Куда исчезла 13-я линия? Ответ: 13-я линия удлинила каждую из оставшихся на 1/12 своей длины. «Новое доказательство» теоремы Пифагора Возьмём прямоугольный треугольник с катетами a и b, гипотенузой c и острым углом , противолежащим катету a. Имеем: a = c sin , b = c cos , откуда a2 = c2 sin2, b2 = c2 cos2. Просуммировав по частям эти равенства, получаем: a2 + b2 = c2 (sin2 + cos2). Но sin2 + cos2 = 1, и поэтому a2 + b2 = c2. Вопрос: В чём ошибка? Ответ: Ошибки здесь нет. Но формула sin2 + cos2 = 1 сама выводится на основании теоремы Пифагора. N M Рис. 1

Слайд 6

Проведение исследования

Тема исследования «Нахождение ошибки в доказательстве софизма» Метод исследования – эксперимент Участники исследования – учащиеся 6,7,9 классов школы Задача исследования: возможность нахождения ошибки в доказательстве софизма

Слайд 7

Нахождение ошибки в доказательстве софизмов

Алгебраические софизмы Пример 1.1 р. = 10 000 к. Пример 2.5 = 6 Пример 3.2 + 2 = 5 Пример 4.Любое число равно его половине Пример 5.Расстояние от Земли до Солнца равно толщине волоска Пример 6.Любое число = 0 Геометрические софизмы Пример 1.Загадочное исчезновение. Пример 2.Земля и апельсин. Пример 3.Два перпендикуляра. Пример 4.«Новое доказательство» теоремы Пифагора.

Слайд 8

Основные ошибки в софизмах

Деление на 0; неправильные выводы из равенства дробей; неправильное извлечение квадратного корня из квадрата выражения; нарушения правил действия с именованными величинами; путаница с понятиями “равенства” и “эквивалентность” в отношении множеств; проведение преобразований над математическими объектами, не имеющими смысла; неравносильный переход от одного неравенства к другому; выводы и вычисления по неверно построенным чертежам; ошибки, возникающие при операциях с бесконечными рядами и предельным переходом.

  • Тема занятия
  • «Математические софизмы»
  • Цель занятия:
  • Углубить знания по математике. Интересно и организованно проверить знания у присутствующих по математике.
  • 2. Развивать логику, воображение, творчество.
  • 3. Повлиять на познавательную активность коллег в сторону её интенсификации.
  • Софизм - доказательство ложного утверждения, причем ошибка в доказательстве искусно замаскирована
  • Софизм - слово греческого происхождения и в переводе означает головоломку, хитроумную выдумку. Математические софизмы являются примерами таких ошибок в математических рассуждениях, когда при очевидной неправильности результата ошибка, приводящая к нему, хорошо замаскирована.
  • К софизмам можно отнести доказательство того, что Ахиллес, бегущий в 10 раз быстрее черепахи, не сможет ее догнать.
  • Пусть черепаха на 100 м впереди Ахиллеса.
  • Тогда Ахиллес пробежит эти 100 м, черепаха будет впереди его на 10 м.
  • Пробежит Ахиллес эти 10 м, а черепаха окажется впереди на 1 м и т.д.
  • Расстояние между ними будет сокращаться, но никогда не обратится в нуль. Значит Ахиллес никогда не догонит черепаху
  • Софистами называют группу древнегреческих философов 4-5 вв. до н.э., достигших большого искусства в логике.
  • В истории математики софизмы
  • играли существенную роль, они способствовали более глубокому уяснению понятий и методов математики.
  • Академик Иван Петрович Павлов говорил, что «правильно понятая ошибка – это путь к откровению». Уяснение ошибок в математических рассуждениях часто содействовало развитию математики. В этом плане особенно поучительна история аксиомы Евклида о параллельных прямых.
  • Примеры
  • Если равны половины, то равны и целые.
  • Полуполное есть то же, что и полупустое, полное – то же самое, что и пустое
  • Найдите ошибки в следующих рассуждениях:
  • Задача № 1.
  • Четырежды четыре – двадцать пять.
  • Доказательство:
  • 16:16=25:25
  • 16 (1:1)=25(1:1)
  • 4*4=25
  • Ответ: Ошибка заключается в том, что распределительный закон умножения автоматически переносится на деление, что неверно
  • Задача № 2
  • С руб.=10000 С коп.
  • Доказательство:
  • С руб. = 100 С коп.
  • 1 руб. = 100 коп.
  • Ответ: Умножать С руб., на 1 рубль нельзя, так как никаких «квадратных рублей» и «квадратных копеек» не существует
  • Практическая задача
  • После нового года цена на товар повысились дважды на 20 %. На сколько процентов повысилась цена товар после двух последовательных повышений?
  • Решение: стоимость товара – а руб.
  • после 1 повышения - 1,2 а руб.
  • после 2 повышения – 1,44 а руб.
  • Вывод: цена на товар повысилась на 44 %.
  • Всякие два равенства можно почленно перемножить. Применим это утверждение к написанным выше равенствам, получим новые равенства
  • С руб. = 10000 С коп
  • Ответ: следует задать вопрос: «Вы живете в этом городе?»
  • Ответ: «Да» - независимо от того, кто отвечает – житель города А или житель города Б означает, что Вы находитесь в городе А. Ответ: «Нет» при любых условиях будет означать, что Вы находитесь в городе Б.
  • Логическая задача – шутка:
  • Два города А и Б расположены рядом. Жители обоих городов часто навещают друг друга. Известно, что все жители города А всегда говорят только правду, а жители города Б всегда лгут.
  • Какой вопрос следует задать жителю, которого Вы встречаете в одном из городов (Вы не знаете в каком), чтобы по его ответу «Да» или «Нет» можно было сразу определить в каком городе Вы находитесь.
  • Математические софизмы могут быть очень полезны. Разбор софизмов развивает логическое мышление, помогает сознательному усвоению обучаемого материала, воспитывает вдумчивость, наблюдательность, критическое отношение к тому, что изучается. Кроме того, разбор софизмов увлекателен. Учащиеся с большим интересом воспринимают софизмы, и, чем труднее софизм, тем больше удовлетворение доставляет его разбор.
  • Особенно интересно эта работа может быть поставлена на дополнительных занятия учащихся старших классов. Знания по математике в начальном и среднем звене еще невелики. Однако на дополнительных занятиях можно познакомить учащихся с несложными математическими софизмами, основанными на нарушении законов действия. При этом, если учесть, что учащиеся начальной и средней школы склонны эмоционально реагировать на абсурдность утверждений, прочность усвоения математического факта значительно повышается
  • В педагогическом плане математические софизмы должны использоваться не столько для предупреждения ошибок, сколько для проверки степени сознательности усвоения материала. Начинать надо с самых простых софизмов, доступных пониманию учащихся, постепенно усложняя задачи по мере накопления учащимися математических знаний.
  • (кликните на картинке)
















Title="Пример 10.Из двух неравных чисел первое всегда больше второго Пусть a и b – произвольные числа и a ≠ b. Имеем:(a – b)2 > 0, т.е. a2 – 2ab – b2 > 0, или a2 + b2 > 2ab.К обеим частям этого неравенства прибавим – 2b2. Получим:a2 – b2 > 2ab – 2b2, или (…">








1 из 23

Презентация на тему: Математические софизмы

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Что такое софизм? Правильно понятая ошибка – это путь к открытиюИ.П. Павлов Софизм (от греч. sophisma – уловка, выдумка, головоломка), формально кажущееся правильным, но по существу ложное умозаключение, основанное на преднамеренно неправильном подборе исходных положений. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок. Особенно часто в математических софизмах выполняются «запрещённые» действия или не учитываются условия применимости теорем, формул и правил. Иногда рассуждения ведутся с использованием ошибочного чертежа или опираются на приводящие к ошибочным заключениям «очевидности». Встречаются софизмы, содержащие и другие ошибки.

№ слайда 3

Описание слайда:

В истории развития математики софизмы играли существенную роль. Они способствовали повышению строгости математических рассуждений и содействовали более глубокому уяснению понятий и методов математики. Роль софизмов в развитии математики сходна с той ролью, какую играют непреднамеренные ошибки в математических исследованиях, допускаемые даже выдающимися математиками. Именно уяснение ошибок в математических рассуждениях часто содействовало развитию математики. Пожалуй, особенно поучительна в этом отношении история аксиомы Евклида о параллельных прямых. Сформулировать эту аксиому можно так: через данную точку, лежащую вне данной прямой, можно провести не более одной прямой, параллельной данной (что одну прямую, параллельную данной, можно провести – это доказывается). Это утверждение на протяжении более чем двух тысяч лет пытались доказать, вывеси из остальных аксиом геометрии, но все попытки не увенчались успехом. Полученные «доказательства» оказались ошибочными. И всё же, несмотря на ошибочность этих «доказательств», они принесли большую пользу развитию геометрии. Можно сказать, что они подготовили одно из величайших достижений в области геометрии и всей математики – создание неевклидовой геометрии. Честь разработки новой геометрии принадлежит нашему великому соотечественнику Н.И. Лобачевскому и венгерскому математику Яношу Бойяи. Н.И. Лобачевский и сам сначала пытался доказать аксиому параллельных, но скоро понял, что этого сделать нельзя. И путь, идя которым Лобачевский убедился в этом, привёл его к созданию новой геометрии. Этот замечательный вклад в математику был одним из тех, которые прославили русскую науку.

№ слайда 4

Описание слайда:

Разбор софизмов прежде всего развивает логическое мышление, то есть прививает навыки правильного мышления. Обнаружить ошибку – это значит осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях. Что особенно важно, разбор софизмов помогает сознательному усвоению изучаемого материала, развивает наблюдательность, вдумчивость и критическое отношение к тому, что изучается. Математические софизмы приучают внимательно и настороженно продвигаться вперёд, тщательно следить за точностью формулировок, правильностью записей и чертежей, за допустимостью обобщений. Всё это нужно и важно. Наконец, разбор софизмов увлекателен. Чем труднее софизм, тем большее удовлетворение доставляет его анализ. Чем полезны софизмы и что они дают?

№ слайда 5

Описание слайда:

№ слайда 6

Описание слайда:

Алгебраические софизмы Вот некоторые результаты решения софизмов: (для подробного просмотра нажмите на выбранную строку) Пример 1.1 р. = 10 000 к. Пример 2.5 = 6 Пример 3.4 = 8 Пример 4.2 · 2 = 5 Пример 5.5 = 1 Пример 6.4 = 5 Пример 7.Любое число равно его половине Пример 8.Расстояние от Земли до Солнца равно толщине волоска Пример 9.Любое число = 0 Пример 10.Из двух неравных чисел первое всегда больше второго

№ слайда 7

Описание слайда:

Пример 1.1 р. = 10 000 к. Возьмём верное равенство: 1 р. = 100 к. Возведём его по частям в квадрат. Мы получим: 1 р. = 10 000 к.************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Возведение в квадрат величин не имеет смысла. В квадрат возводятся только числа.

№ слайда 8

Описание слайда:

Попытаемся доказать, что 5 = 6. С этой целью возьмём числовое тождество: 35 + 10 – 45 = 42 + 12 – 54. Вынесем общие множители левой и правой частей за скобки. Получим: 5 (7 + 2 – 9) = 6 (7 + 2 – 9). Разделим обе части этого равенства на общий множитель (заключённый в скобки).Получаем 5 = 6.************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Общий множитель (7 + 2 – 9) равен 0, а делить на 0 нельзя.

№ слайда 9

Описание слайда:

№ слайда 10

Описание слайда:

Пример 4.2 · 2 = 5 Имеем числовое равенство (верное): 4: 4 = 5: 5. Вынесем за скобки в каждой части его общий множитель. Получим: 4 (1: 1) = 5 (1: 1).Числа в скобках равны, поэтому 4 = 5, или 2 · 2 = 5.************************************************************************************Вопрос: Где здесь ошибка?Ответ (нажмите «Enter»): Ошибка допущена в вынесении общего множителя за скобки в левой и правой частях тождества 4: 4 = 5: 5.

№ слайда 11

Описание слайда:

Из чисел 5 и 1 по отдельности вычтем одно и то же число 3.Получим числа 2 и – 2. При возведении в квадрат этих чисел получаются равные числа 4 И 4. Значит, должны быть равны и исходные числа 5 и 1. ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Из равенства квадратов двух чисел не следует, что сами эти числа равны.

№ слайда 12

Описание слайда:

Имеем числовое равенство (верное):16 – 36 = 25 – 45; 16 – 36 + 20,25 = 25 – 45 + 20,25;(4 – 4,5)2 = (5 – 4,5)2; 4 – 4,5 = 5 – 4,5; 4 = 5. ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): (4 – 4,5)2 = (5 – 4,5)2 ↔ |4 – 4,5| = |5 – 4,5|. Пример 6.4 = 5

№ слайда 13

Описание слайда:

Пример 7.Любое число равно его половине Возьмём два равных числа a и b, a = b. Обе части этого равенства умножим на a и затем вычтем из произведений по b2. Получим:a2 – b2 = ab – b2, или (a + b) (a – b) = b (a – b).Отсюда a + b = b, или a + a = a, так как b = a.Значит, 2a = a, a = . ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Нельзя делить на (a – b), так как (a – b) = 0.

№ слайда 14

Описание слайда:

Пример 8.Расстояние от Земли до Солнца равно толщине волоска Пусть a (м) – расстояние от Земли до Солнца, а b (м) – толщина волоска. Среднее арифметическое их обозначим через v. Имеем:a + b = 2v, a = 2v – b, a – 2v = – b. Перемножив по частям два последних равенства, получаем:a2 – 2av = b2 – 2bv. Прибавим к каждой части v2. Получим:a2 – 2av + v2 = b2 – 2bv + v2, или (a – v)2 = (b – v)2, т.е. (a – v) = (b – v), и, значит, a = b. ************************************************************************************Вопрос: Где здесь ошибка?Ответ (нажмите «Enter»): Ошибка как в примере №6.

№ слайда 15

Описание слайда:

Пример 9.Любое число = 0 Каково бы ни было число a, верны равенства:(+a)2 = a2 и (– a)2 = a2. Следовательно, (+a)2 = (– a)2, а значит, +a = – a, или 2a = 0, и поэтому a = 0. ************************************************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»):

№ слайда 16

Описание слайда:

Пример 10.Из двух неравных чисел первое всегда больше второго Пусть a и b – произвольные числа и a ≠ b. Имеем:(a – b)2 > 0, т.е. a2 – 2ab – b2 > 0, или a2 + b2 > 2ab.К обеим частям этого неравенства прибавим – 2b2. Получим:a2 – b2 > 2ab – 2b2, или (a + b) (a – b) > 2b (a – b). После деления обеих частей на (a – b) имеем:a + b > 2b, откуда следует, что a > b. ************************************************************************************Вопрос: Где допущена ошибка?Ответ (нажмите «Enter»): При делении обеих частей неравенства (a + b) (a – b) > 2b (a – b) на (a – b) знак неравенства может измениться на противоположный (если a – b < 0).

№ слайда 17

Описание слайда:

Геометрические софизмы Вот некоторые примеры геометрических софизмов: (для подробного просмотра нажмите на выбранную строку) Пример 1.Загадочное исчезновение. Пример 2.Земля и апельсин Пример 4.Два перпендикуляра Пример 5.«Новое доказательство» теоремы Пифагора

№ слайда 18

Описание слайда:

Пример 1.Загадочное исчезновение У нас есть произвольный прямоугольник, на котором начерчено 13 одинаковых линий на равном расстоянии друг от друга, так, как показано на рисунке 1. Теперь «разрежем» прямоугольник прямой MN, проходящей через верхний конец первой и нижний конец последней линии. Сдвигаем обе половины вдоль по этой линии и замечаем, что линий вместо 13 стало 12. Одна линия исчезла бесследно. ************************************************************************************Вопрос: Куда исчезла 13-я линия?Ответ (нажмите «Enter»):

№ слайда 19

Описание слайда:

Пример 2.Земля и апельсин Вообразим, что земной шар обтянут по экватору обручем и что подобным же образом обтянут и апельсин по его большому кругу. Далее вообразим, что окружность каждого обруча удлинилась на 1м. Тогда обручи отстанут от поверхности тел и образуют некоторый зазор************************************************************************************Вопрос: Где зазор будет больше: у апельсина или у Земли?Ответ (нажмите «Enter»): Пусть длина окружности земного шара = C, а апельсина с метрам. Тогда радиус Земли R = C/2 и радиус апельсина r = c/2 . После прибавки к радиусам 1 метра окружность обруча у Земли будет C + 1, а у апельсина c + 1. Радиусы их соответственно будут: (C + 1)/2 и (c + 1)/2 . Если из новых радиусов вычтем прежние, то получим в обоих случаях одно и то же.(C + 1)/2 - C/2 = 1/2 - для Земли, (c + 1)/2 - c/2 = 1/2 - для апельсина Итак, у Земли и у апельсина получается один и тот же зазор в 1/2 метра (примерно 16 см).

№ слайда 20

Описание слайда:

В дне деревянного судна во время плавания случилась прямоугольная пробоина в 13 см длины и 5 см ширины, т.е. площадь пробоины = 65 см2. Судовой плотник взял квадратную дощечку со стороной квадрата 8 см (т.е. площадь = 64 см2), разрезал её прямыми линиями на четыре части A, B, C, D так, как показано на рисунке 2, а затем сложил их так, что получился прямоугольник, как раз соответствующий пробоине, см. рисунок 3. Этим прямоугольником он и заделал пробоину. Вышло, что плотник сумел квадрат в 64 см2 обратить в прямоугольник с площадью 65 см2.*******************************************************Вопрос: Как такое могло получиться?Ответ (нажмите «Enter»): Легко видеть, что получившиеся при разрезании квадрата треугольники A и B равны между собой. Также равны и трапеции C, D. Меньшее основание трапеций и меньший катет треугольников равны 3 см и поэтому должны совпасть при совмещении треугольника A с трапецией C и треугольника B с трапецией D. В чём же секрет? Дело в том, что точки G, H, E не лежат на одной прямой, tg EHK = 8/3 , а tg HGJ = 5/2. Так как 8/3 – 5/2 = 1/6 > 0, то EHK > HGJ. Точно так же линия EFG – ломанная. Площадь полученного прямоугольника действительно равна 65 см2, но в нём имеется щель в виде параллелограмма, площадь которого в точности равна 1 см2. Наибольшая ширина щели равна 5 – 3 – (5·3)/8 = 1/8 см. Таким образом плотнику всё равно придётся замазывать небольшую щель.

№ слайда 21

Описание слайда:

Пример 4. Два перпендикуляра Попытаемся «доказать», что через точку, лежащую вне прямой, к этой прямой можно провести два перпендикуляра. С этой целью возьмём треугольник ABC (рисунок 4). На сторонах AB и BC этого треугольника, как на диаметрах, построим полуокружности. Пусть эти полуокружности пересекаются со стороной AC в точках E и D. Соединим точки E и D прямыми с точкой B. Угол AEB прямой, как вписанный, опирающийся на диаметр; угол BDC также прямой. Следовательно, BE AC и BD AC. Через точку B проходят два перпендикуляра к прямой AC. ****************************************************Вопрос: В чём ошибка?Ответ (нажмите «Enter»): Рассуждения опирались на ошибочный чертёж. В действительности полуокружности пересекаются со стороной AC в одной точке, т.е. BE совпадает с BD.

Описание слайда:

«Аванта +. Математика». – Москва, изд. «Аванта +»,1998.«БЭКМ – 2007». – Москва, 2007. Игнатьев Е.И. «Математическая смекалка. Занимательные задачи, игры, фокусы, парадоксы». – Москва, изд. «Омега»,1994.Нагибин Ф.Ф., Канин Е.С. «Математическая шкатулка». – Москва, изд. «Просвещение»,1988.

Рекомендуем почитать

Наверх